Aliases: C24⋊1C18, C22≀C2⋊C9, C24⋊C9⋊1C2, (C22×C6).1A4, (C23×C6).1C6, C3.(C24⋊C6), C23⋊1(C3.A4), (C2×C6).6(C2×A4), (C3×C22≀C2).C3, C22.2(C2×C3.A4), SmallGroup(288,73)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22 — C24 — C23×C6 — C24⋊C9 — C24⋊C18 |
C24 — C24⋊C18 |
Generators and relations for C24⋊C18
G = < a,b,c,d,e | a2=b2=c2=d2=e18=1, ab=ba, ac=ca, ad=da, eae-1=db=bd, bc=cb, ebe-1=abcd, ede-1=cd=dc, ece-1=d >
Subgroups: 270 in 62 conjugacy classes, 12 normal (all characteristic)
C1, C2, C3, C4, C22, C22, C6, C2×C4, D4, C23, C23, C9, C12, C2×C6, C2×C6, C22⋊C4, C2×D4, C24, C18, C2×C12, C3×D4, C22×C6, C22×C6, C22≀C2, C3.A4, C3×C22⋊C4, C6×D4, C23×C6, C2×C3.A4, C3×C22≀C2, C24⋊C9, C24⋊C18
Quotients: C1, C2, C3, C6, C9, A4, C18, C2×A4, C3.A4, C2×C3.A4, C24⋊C6, C24⋊C18
Character table of C24⋊C18
class | 1 | 2A | 2B | 2C | 2D | 3A | 3B | 4 | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 9A | 9B | 9C | 9D | 9E | 9F | 12A | 12B | 18A | 18B | 18C | 18D | 18E | 18F | |
size | 1 | 3 | 4 | 6 | 6 | 1 | 1 | 12 | 3 | 3 | 4 | 4 | 6 | 6 | 6 | 6 | 16 | 16 | 16 | 16 | 16 | 16 | 12 | 12 | 16 | 16 | 16 | 16 | 16 | 16 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | -1 | -1 | ζ65 | ζ6 | ζ6 | ζ65 | ζ65 | ζ6 | linear of order 6 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ6 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | -1 | -1 | ζ6 | ζ65 | ζ65 | ζ6 | ζ6 | ζ65 | linear of order 6 |
ρ7 | 1 | 1 | -1 | 1 | 1 | ζ3 | ζ32 | -1 | ζ32 | ζ3 | ζ65 | ζ6 | ζ32 | ζ32 | ζ3 | ζ3 | ζ94 | ζ97 | ζ98 | ζ95 | ζ92 | ζ9 | ζ6 | ζ65 | -ζ97 | -ζ98 | -ζ95 | -ζ94 | -ζ9 | -ζ92 | linear of order 18 |
ρ8 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ98 | ζ95 | ζ97 | ζ9 | ζ94 | ζ92 | ζ3 | ζ32 | ζ95 | ζ97 | ζ9 | ζ98 | ζ92 | ζ94 | linear of order 9 |
ρ9 | 1 | 1 | -1 | 1 | 1 | ζ3 | ζ32 | -1 | ζ32 | ζ3 | ζ65 | ζ6 | ζ32 | ζ32 | ζ3 | ζ3 | ζ97 | ζ9 | ζ95 | ζ92 | ζ98 | ζ94 | ζ6 | ζ65 | -ζ9 | -ζ95 | -ζ92 | -ζ97 | -ζ94 | -ζ98 | linear of order 18 |
ρ10 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ95 | ζ92 | ζ9 | ζ94 | ζ97 | ζ98 | ζ3 | ζ32 | ζ92 | ζ9 | ζ94 | ζ95 | ζ98 | ζ97 | linear of order 9 |
ρ11 | 1 | 1 | -1 | 1 | 1 | ζ32 | ζ3 | -1 | ζ3 | ζ32 | ζ6 | ζ65 | ζ3 | ζ3 | ζ32 | ζ32 | ζ98 | ζ95 | ζ97 | ζ9 | ζ94 | ζ92 | ζ65 | ζ6 | -ζ95 | -ζ97 | -ζ9 | -ζ98 | -ζ92 | -ζ94 | linear of order 18 |
ρ12 | 1 | 1 | -1 | 1 | 1 | ζ3 | ζ32 | -1 | ζ32 | ζ3 | ζ65 | ζ6 | ζ32 | ζ32 | ζ3 | ζ3 | ζ9 | ζ94 | ζ92 | ζ98 | ζ95 | ζ97 | ζ6 | ζ65 | -ζ94 | -ζ92 | -ζ98 | -ζ9 | -ζ97 | -ζ95 | linear of order 18 |
ρ13 | 1 | 1 | -1 | 1 | 1 | ζ32 | ζ3 | -1 | ζ3 | ζ32 | ζ6 | ζ65 | ζ3 | ζ3 | ζ32 | ζ32 | ζ95 | ζ92 | ζ9 | ζ94 | ζ97 | ζ98 | ζ65 | ζ6 | -ζ92 | -ζ9 | -ζ94 | -ζ95 | -ζ98 | -ζ97 | linear of order 18 |
ρ14 | 1 | 1 | -1 | 1 | 1 | ζ32 | ζ3 | -1 | ζ3 | ζ32 | ζ6 | ζ65 | ζ3 | ζ3 | ζ32 | ζ32 | ζ92 | ζ98 | ζ94 | ζ97 | ζ9 | ζ95 | ζ65 | ζ6 | -ζ98 | -ζ94 | -ζ97 | -ζ92 | -ζ95 | -ζ9 | linear of order 18 |
ρ15 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ9 | ζ94 | ζ92 | ζ98 | ζ95 | ζ97 | ζ32 | ζ3 | ζ94 | ζ92 | ζ98 | ζ9 | ζ97 | ζ95 | linear of order 9 |
ρ16 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ97 | ζ9 | ζ95 | ζ92 | ζ98 | ζ94 | ζ32 | ζ3 | ζ9 | ζ95 | ζ92 | ζ97 | ζ94 | ζ98 | linear of order 9 |
ρ17 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ92 | ζ98 | ζ94 | ζ97 | ζ9 | ζ95 | ζ3 | ζ32 | ζ98 | ζ94 | ζ97 | ζ92 | ζ95 | ζ9 | linear of order 9 |
ρ18 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ94 | ζ97 | ζ98 | ζ95 | ζ92 | ζ9 | ζ32 | ζ3 | ζ97 | ζ98 | ζ95 | ζ94 | ζ9 | ζ92 | linear of order 9 |
ρ19 | 3 | 3 | -3 | -1 | -1 | 3 | 3 | 1 | 3 | 3 | -3 | -3 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ20 | 3 | 3 | 3 | -1 | -1 | 3 | 3 | -1 | 3 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ21 | 3 | 3 | -3 | -1 | -1 | -3+3√-3/2 | -3-3√-3/2 | 1 | -3-3√-3/2 | -3+3√-3/2 | 3-3√-3/2 | 3+3√-3/2 | ζ6 | ζ6 | ζ65 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | ζ32 | ζ3 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C2×C3.A4 |
ρ22 | 3 | 3 | 3 | -1 | -1 | -3-3√-3/2 | -3+3√-3/2 | -1 | -3+3√-3/2 | -3-3√-3/2 | -3-3√-3/2 | -3+3√-3/2 | ζ65 | ζ65 | ζ6 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3.A4 |
ρ23 | 3 | 3 | 3 | -1 | -1 | -3+3√-3/2 | -3-3√-3/2 | -1 | -3-3√-3/2 | -3+3√-3/2 | -3+3√-3/2 | -3-3√-3/2 | ζ6 | ζ6 | ζ65 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3.A4 |
ρ24 | 3 | 3 | -3 | -1 | -1 | -3-3√-3/2 | -3+3√-3/2 | 1 | -3+3√-3/2 | -3-3√-3/2 | 3+3√-3/2 | 3-3√-3/2 | ζ65 | ζ65 | ζ6 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3 | ζ32 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C2×C3.A4 |
ρ25 | 6 | -2 | 0 | -2 | 2 | 6 | 6 | 0 | -2 | -2 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊C6 |
ρ26 | 6 | -2 | 0 | 2 | -2 | 6 | 6 | 0 | -2 | -2 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊C6 |
ρ27 | 6 | -2 | 0 | -2 | 2 | -3-3√-3 | -3+3√-3 | 0 | 1-√-3 | 1+√-3 | 0 | 0 | -1+√-3 | 1-√-3 | -1-√-3 | 1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ28 | 6 | -2 | 0 | 2 | -2 | -3-3√-3 | -3+3√-3 | 0 | 1-√-3 | 1+√-3 | 0 | 0 | 1-√-3 | -1+√-3 | 1+√-3 | -1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ29 | 6 | -2 | 0 | 2 | -2 | -3+3√-3 | -3-3√-3 | 0 | 1+√-3 | 1-√-3 | 0 | 0 | 1+√-3 | -1-√-3 | 1-√-3 | -1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ30 | 6 | -2 | 0 | -2 | 2 | -3+3√-3 | -3-3√-3 | 0 | 1+√-3 | 1-√-3 | 0 | 0 | -1-√-3 | 1+√-3 | -1+√-3 | 1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(2 35)(3 27)(5 29)(6 21)(8 23)(9 33)(10 30)(12 32)(13 24)(15 26)(16 36)(18 20)
(1 25)(2 35)(4 19)(5 29)(7 31)(8 23)(11 22)(12 32)(14 34)(15 26)(17 28)(18 20)
(2 15)(3 16)(5 18)(6 10)(8 12)(9 13)(20 29)(21 30)(23 32)(24 33)(26 35)(27 36)
(1 14)(2 15)(4 17)(5 18)(7 11)(8 12)(19 28)(20 29)(22 31)(23 32)(25 34)(26 35)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)
G:=sub<Sym(36)| (2,35)(3,27)(5,29)(6,21)(8,23)(9,33)(10,30)(12,32)(13,24)(15,26)(16,36)(18,20), (1,25)(2,35)(4,19)(5,29)(7,31)(8,23)(11,22)(12,32)(14,34)(15,26)(17,28)(18,20), (2,15)(3,16)(5,18)(6,10)(8,12)(9,13)(20,29)(21,30)(23,32)(24,33)(26,35)(27,36), (1,14)(2,15)(4,17)(5,18)(7,11)(8,12)(19,28)(20,29)(22,31)(23,32)(25,34)(26,35), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)>;
G:=Group( (2,35)(3,27)(5,29)(6,21)(8,23)(9,33)(10,30)(12,32)(13,24)(15,26)(16,36)(18,20), (1,25)(2,35)(4,19)(5,29)(7,31)(8,23)(11,22)(12,32)(14,34)(15,26)(17,28)(18,20), (2,15)(3,16)(5,18)(6,10)(8,12)(9,13)(20,29)(21,30)(23,32)(24,33)(26,35)(27,36), (1,14)(2,15)(4,17)(5,18)(7,11)(8,12)(19,28)(20,29)(22,31)(23,32)(25,34)(26,35), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36) );
G=PermutationGroup([[(2,35),(3,27),(5,29),(6,21),(8,23),(9,33),(10,30),(12,32),(13,24),(15,26),(16,36),(18,20)], [(1,25),(2,35),(4,19),(5,29),(7,31),(8,23),(11,22),(12,32),(14,34),(15,26),(17,28),(18,20)], [(2,15),(3,16),(5,18),(6,10),(8,12),(9,13),(20,29),(21,30),(23,32),(24,33),(26,35),(27,36)], [(1,14),(2,15),(4,17),(5,18),(7,11),(8,12),(19,28),(20,29),(22,31),(23,32),(25,34),(26,35)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)]])
Matrix representation of C24⋊C18 ►in GL6(𝔽37)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 36 | 35 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 36 | 35 |
0 | 0 | 0 | 0 | 0 | 1 |
36 | 35 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 36 | 35 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 36 | 0 | 0 | 0 |
0 | 0 | 0 | 36 | 0 | 0 |
0 | 0 | 0 | 0 | 36 | 0 |
0 | 0 | 0 | 0 | 0 | 36 |
36 | 0 | 0 | 0 | 0 | 0 |
0 | 36 | 0 | 0 | 0 | 0 |
0 | 0 | 36 | 0 | 0 | 0 |
0 | 0 | 0 | 36 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 26 | 0 |
0 | 0 | 0 | 0 | 11 | 11 |
10 | 0 | 0 | 0 | 0 | 0 |
27 | 27 | 0 | 0 | 0 | 0 |
0 | 0 | 10 | 0 | 0 | 0 |
0 | 0 | 27 | 27 | 0 | 0 |
G:=sub<GL(6,GF(37))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,36,0,0,0,0,0,35,1,0,0,0,0,0,0,36,0,0,0,0,0,35,1],[36,0,0,0,0,0,35,1,0,0,0,0,0,0,36,0,0,0,0,0,35,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,36],[36,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,0,10,27,0,0,0,0,0,27,0,0,0,0,0,0,10,27,0,0,0,0,0,27,26,11,0,0,0,0,0,11,0,0,0,0] >;
C24⋊C18 in GAP, Magma, Sage, TeX
C_2^4\rtimes C_{18}
% in TeX
G:=Group("C2^4:C18");
// GroupNames label
G:=SmallGroup(288,73);
// by ID
G=gap.SmallGroup(288,73);
# by ID
G:=PCGroup([7,-2,-3,-3,-2,2,-2,2,50,2523,514,6304,956,3036,5305]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^2=e^18=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=d*b=b*d,b*c=c*b,e*b*e^-1=a*b*c*d,e*d*e^-1=c*d=d*c,e*c*e^-1=d>;
// generators/relations
Export